Q.
If $x \in[0,2 \pi], a, b, c \in R(t>\,0)$ such that
$\sqrt{1+\sin 2 x}+\left|t+\frac{4}{t}-4\right|+(a+b+c)^{2} \leq 0$, then the value of
$\begin{vmatrix}\sin x & -\cos x & t \\ t & 2 & \sin x \cos x \\ a^{3}+b^{3}+c^{3} & 3 a b c & a^{2}+b^{2}+c^{2}\end{vmatrix}$
Determinants
Solution: