Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x + i y =(-1+i\sqrt3)^{2010}$ , then $x =$ ______

KCETKCET 2010Complex Numbers and Quadratic Equations

Solution:

$x+i y=(-1+i \sqrt{3})^{2010}$
$\Rightarrow x +i y=(2)^{2010}\left(\frac{-1+i \sqrt{3}}{2}\right)^{2010}$
$\left(\because \omega=\frac{-1+i \sqrt{3}}{2}\right)$
$\Rightarrow (x +iy)=(2)^{2010} \omega^{2010}$
$\Rightarrow (x +iy)=(2)^{2010}\left(\omega^{3}\right)^{670}$
$\left(\because \omega^{3}=1\right)$
$\Rightarrow (x +iy)=(2)^{2010}(1)^{670}=2^{2010}+i \cdot 0$
On comparing real part
$\Rightarrow x=2^{2010}$