Q.
If $[x]$ denotes the greatest integer not exceeding $x$ and if the function $f$ defined by
$f(x)=\begin{cases}\frac{a+2 \cos x}{x^{2}} & , x<0 \\ b \tan \frac{\pi}{[x+4]} & , x \geq 0\end{cases}$
is continuous at $x=0$, then the ordered pair $(a, b)$ is equal to
EAMCETEAMCET 2011
Solution: