Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x = ct $ and $y = \frac {c}{t}$ , find $\frac {dy}{dx} $ at $t=2$

KCETKCET 2015Continuity and Differentiability

Solution:

We have,
$y=\frac{c}{t}$
$ \Rightarrow \frac{d y}{d t}=\frac{-c}{t^{2}}$
Also, $ x=c t$
$\Rightarrow \frac{d x}{d t}=c$
$\therefore \frac{d y}{d x}=\frac{(d y / d t)}{(d x / d t)}=\frac{\frac{-c}{t^{2}}}{c}=\frac{-1}{t^{2}}$
On putting $t=2$, we get
$\frac{d y}{d x}=-\frac{1}{4}$