Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ x={{\cos }^{3}}\theta $ and $ y={{\sin }^{3}}\theta , $ then $ 1+{{\left( \frac{dy}{dx} \right)}^{2}} $ is equal to:

KEAMKEAM 2000

Solution:

$ x={{\cos }^{3}}\theta ,y={{\sin }^{3}}\theta $ On differentiating w.r.t. $ \theta $ respectively $ \frac{dx}{d\theta }=-3{{\cos }^{2}}\theta \sin \theta $ and $ \frac{dy}{d\theta }=3{{\sin }^{2}}\theta \cos \theta $ Now, $ \frac{dy}{dx}=-\frac{3{{\sin }^{2}}\theta \cos \theta }{3{{\cos }^{2}}\theta \sin \theta }=-\tan \theta $ $ \therefore $ $ 1+{{\left( \frac{dy}{dx} \right)}^{2}}=1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $