Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $X$ and $Y$ are two non-singular matrices such that $ XY{{X}^{-1}}=\left( \begin{matrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -7 \\ \end{matrix} \right), $ then $ X{{Y}^{-1}}{{X}^{-1}} $ is equal to

J & K CETJ & K CET 2010Determinants

Solution:

Given, $ XY{{X}^{-1}}=\left[ \begin{matrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -7 \\ \end{matrix} \right] $
Taking inverse both the sides, we get
$ {{(XY{{X}^{-1}})}^{-1}}={{\left[ \begin{matrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -7 \\ \end{matrix} \right]}^{-1}} $
$ \Rightarrow $ $ X{{Y}^{-1}}{{X}^{-1}}={{\left[ \begin{matrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -7 \\ \end{matrix} \right]}^{-1}} $
Now, we are to determine inverse of $ \left[ \begin{matrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -7 \\ \end{matrix} \right]=A\,\,(consider) $
adj $ A=\left[ \begin{matrix} -14 & 0 & 0 \\ 0 & -21 & 0 \\ 0 & 0 & 6 \\ \end{matrix} \right] $
and $ |A|=-42 $ $ {{A}^{-1}}\,=\frac{1}{|A|}\,\,(adj\,\,A)=\left[ \begin{matrix} 1/3 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & -1/7 \\ \end{matrix} \right] $
Hence, $ X{{Y}^{-1}}{{X}^{-1}}=\left[ \begin{matrix} 1/3 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & -1/7 \\ \end{matrix} \right] $