Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x =\frac{\sqrt{3}}{3}$ and $( x +1)( y +1)=2$, then the value of $\tan ^{-1} y$ is equal to

Inverse Trigonometric Functions

Solution:

$ x=\frac{1}{\sqrt{3}}$ and $x y+x+y+1=2$
$x y+x+y=1 $
$y(1+x)=1-x$
$y=\frac{1-x}{1+x}=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \Rightarrow y=\tan \frac{\pi}{12} $
$\therefore \tan ^{-1} y=\frac{\pi}{12}$