Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x \sqrt{(1+y)}+y \sqrt{(1+x)}=0$, then $\frac{d y}{d x}$ equals -

Continuity and Differentiability

Solution:

$x^2(1+y)=y^2(1+x) $
$\Rightarrow x^2-y^2+x y(x-y)=0 $
$\Rightarrow (x-y)(x+y+x y)=0$
Now $x \neq y $ [does not satisfy the given equation]
$\therefore x+y+x y=0 \Rightarrow y=\frac{-x}{1+x} $
$\therefore \frac{d y}{d x}=\frac{-(1+x)+x}{(1+x)^2}=-\frac{1}{(1+x)^2}$