Q. If $x_{1}, x_{2}, x_{3}, x_{4}$ are roots of the equation $x^{4}-x^{3} \sin 2 \beta+$ $x^{2} \cos 2 \beta-x \cos \beta-\sin \beta=0$, then $\displaystyle\sum_{i=1}^{4} \tan ^{-1} x_{i}$ is equal to
Inverse Trigonometric Functions
Solution: