Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x_1$ and $x_2$ are the two solutions of the equation $2 \cos x \sin 3 x=\sin 4 x+1$ lying in the interval $[0,2 \pi]$, then the value of $\left|x_1-x_2\right|$ is

Complex Numbers and Quadratic Equations

Solution:

$\sin 4 x+\sin 2 x=\sin 4 x+1$
$\therefore \sin 2 x=1 $
$\Rightarrow 2 x=\frac{\pi}{2} \text { or } \frac{5 \pi}{2} $
$\therefore x=\frac{\pi}{4}, \frac{5 \pi}{4} $
$\therefore\left|x_1-x_2\right|=\pi$