Thank you for reporting, we will resolve it shortly
Q.
If $x_1$ and $x_2$ are the roots of $3x^2 - 2x - 6 = 0$, then $x_1^2 + x_2^2$ is equal to
KEAMKEAM 2017Complex Numbers and Quadratic Equations
Solution:
We have,
$3 x^{2}-2 x-6=0$
Since, $x_{1}$ and $x_{2}$ are the roots of above equation.
$\therefore x_{1}+x_{2}=\frac{-(-2)}{3}=\frac{2}{3}$
and $x_{1} x_{2}=\frac{-6}{3}=-2$
Now,
$\left(x_{1}+x_{2}\right)^{2}=x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}$
$\Rightarrow x_{1}^{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}$
$=\left(\frac{2}{3}\right)^{2}-2(-2)$
$=\frac{4}{9}+4=\frac{40}{9}$