Thank you for reporting, we will resolve it shortly
Q.
If we shift a body in equilibrium from $A$ to $C$ in a gravitational field via path $A C$ or $A B C$,
Work, Energy and Power
Solution:
For the path $A C$,
$W_{A C}=F s \cos \left(90^{\circ}-\theta\right)=m g s \sin \theta=m g h$ $(\because F=m g)$
For path $A B, W_{A B}=F a \cos 90^{\circ}=0$
For path $B C, W_{B C}=F h \cos 0^{\circ}=m g h$
So that $W_{A B}+W_{B C}=m g h=W_{A C}$
i.e., $W_{A B C}=W_{B C}$