Thank you for reporting, we will resolve it shortly
Q.
If $\vec{u}$ is instantaneous velocity of particle and $\vec{v}$ is velocity of wave, then
Waves
Solution:
$\vec{u}$ may be perpendicular or parallel to $\bar{v}$ depending on whether it is a transverse or longitudinal wave.
$y=A \sin k x-\omega t $
$\frac{d y}{d t}=A \omega \cos k x-\omega t$
$\frac{d y}{d t}=v $
$u=-A \omega \cos k x-\omega t $
$|v|=\frac{\omega}{k}$
Slope of $y=A \sin k x-\omega t$
$\frac{d y}{d x}=A k \cos k x-\omega t$
$\left|\frac{d y}{d x}\right|=|v|\left|\frac{d y}{d x}\right|$
$u=|v|$ (Slope of waveform)