The position vector of the centroid of the triangle is $\frac{\vec{ a }+\vec{ b }+\vec{ c }}{3}$. Since, the triangle is an equilateral, therefore the orthocentre coincides with the centroid and hence
$\frac{\vec{ a }+\vec{ b }+\vec{ c }}{3}=\vec{ 0 } \Rightarrow \vec{ a }+\vec{ b }+\vec{ c }=\vec{ 0 }$