Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\vec {a}, \vec { b}, \vec{c}$ are the position vectors of the vertices of an equilateral triangle whose orthocentre is at the origin, then

UPSEEUPSEE 2010

Solution:

The position vector of the centroid of the triangle is $\frac{\vec{ a }+\vec{ b }+\vec{ c }}{3}$. Since, the triangle is an equilateral, therefore the orthocentre coincides with the centroid and hence
$\frac{\vec{ a }+\vec{ b }+\vec{ c }}{3}=\vec{ 0 } \Rightarrow \vec{ a }+\vec{ b }+\vec{ c }=\vec{ 0 }$