Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\vec{a}$ and $\vec{b}$ are unit vectors enclosing an angle $\theta$ and $ \left| \vec{a} + \vec{b}\right| < 1$, then

Vector Algebra

Solution:

$\left|\vec{a} + \vec{b}\right| < 1$
$\Rightarrow \left|\vec{a} + \vec{b}\right|^{2} < 1$
$\Rightarrow \left|\vec{a}\right|^{2} + \left|\vec{b}\right|^{2} + 2\vec{a}\cdot\vec{b} < 1$
$\Rightarrow \vec{a}\cdot \vec{b} < -\frac{1}{2}$
$\Rightarrow \left|\vec{a}\right|\left|\vec{b}\right|cos\,\theta < -\frac{1}{2}$
$\Rightarrow 1 \times 1\times cos\,\theta < -\frac{1}{2}$
$\Rightarrow cos\,\theta < -\frac{1}{2}$
$\Rightarrow -1 \le cos\,\theta < -\frac{1}{2}$
$\Rightarrow \pi \ge \theta > \frac{2\pi}{3}$