Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If veca and vecb are two vectors of magnitude 2, each inclined at an angle 60°, then angle between veca and veca + vecb is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\vec{a}$ and $\vec{b}$ are two vectors of magnitude $2$, each inclined at an angle $60^\circ$, then angle between $\vec{a}$ and $\vec{a} +\vec{b}$ is
COMEDK
COMEDK 2014
Vector Algebra
A
$30^\circ$
30%
B
$45^\circ$
26%
C
$60^\circ$
27%
D
$90^\circ$
18%
Solution:
Let $ \theta $ be angle between $\vec{a}$ and $\vec{b}$ then $ \theta = 60^\circ$ (given)
Since , $|\vec{a} + \vec{b}| = |\vec{a}|^2 |+ |\vec{b}|^2 + 2\vec{a} .\vec{b} $
$ = 4 + 4 + (2 \times 2 \times 2 \times \cos 60^\circ)$
$ 8 + 8 \, \cos 60^\circ = 8 + 4 = 12$
$ \Rightarrow \:\:\: |\vec{a} + \vec{b}| = \sqrt{12} = 2 \sqrt{3}$
Now, $\vec{a}( \vec{a} +\vec{b} ) = |\vec{a}||\vec{a} +\vec{b}| \cos \, x$
where x is angle between $\vec{a} $ and $\vec{a} + \vec{b}$
$\Rightarrow \:\:\: \vec{a} . \vec{a} + \vec{a} .\vec{b} = 4 \sqrt{3} \cos \: x$
$ 4 + 2 \times 2 \: \cos 60^\circ = 4 \sqrt{3} \, \cos x$
$\Rightarrow \:\: 6 = 4\sqrt{3} \:\:\: \cos x$
$\Rightarrow \:\:\: \cos x = \frac{\sqrt{3}}{2} = \cos \frac{\pi}{6}$
$\Rightarrow \:\:\: x = 30^\circ$