Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If veca and vecb are two non-zero vectors such that | veca . vecb| = | veca × vecb| , then the angle between veca and vecb is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\vec{a}$ and $\vec{b}$ are two non-zero vectors such that $| \vec{a} . \vec{b}| = | \vec{a} \times \vec{b}|$ , then the angle between $\vec{a}$ and $\vec{b}$ is
COMEDK
COMEDK 2005
Vector Algebra
A
$\pi / 4$ only
38%
B
$\pi / 2$ only
24%
C
$3\pi / 4$ only
19%
D
$\pi / 4$ or $3\pi / 4$
19%
Solution:
$\left|\vec{a}.\vec{b}\right|=\left|\vec{a} \times \vec{b}\right| $
$\Rightarrow \left| \left|\vec{a}\right|\left|\vec{b}\right|\cos \theta \right|=\left|\left|\vec{a}\right|\left|\vec{b}\right|\sin \theta \hat{n} \right|$
$\Rightarrow \left|\vec{a}\right|\left|\vec{b}\right|\left|\cos \theta \right| =\left| \left|\vec{a}\right| \left|\vec{b}\right|\sin\theta \hat{n} \right|$
$\Rightarrow \left|\cos \theta\right| = \left|\sin \theta\right|$
$\Rightarrow \theta= \frac{\pi}{4} $ and $\frac{3\pi}{4} $ are possible values