Q. If $\underset{( i \neq j \neq k )}{\displaystyle\sum_{i=0}^{\infty} \displaystyle\sum_{j=0}^{\infty} \displaystyle\sum_{k=0}^{\infty} \frac{1}{3^i 3^j 3^k}}=\frac{27 \times A}{208}$; where $A$ is single digit natural number, then find the value of $A$
Sequences and Series
Solution: