Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\overrightarrow{u},\overrightarrow{v} $ and $\overrightarrow{w} $ are three non coplanar vectors, then $(\overrightarrow{u}+\overrightarrow{v} -\overrightarrow{w}).[(\overrightarrow{u}-\overrightarrow{v})\times (\overrightarrow{v}-\overrightarrow{w} )]= $

Vector Algebra

Solution:

$\left(\vec{u}+\vec{v}-\vec{w}\right)\cdot\left(\left(\vec{u}-\vec{v}\right)\times\left(\vec{v}-\vec{w}\right)\right)$
$=\left(\vec{u}+\vec{v}-\vec{w}\right)\cdot\left(\vec{u}\times\vec{v}-\vec{u}\times\vec{w}+\vec{v}\times\vec{w}\right)$
$\left[\because \vec{v}\times\vec{v}=\vec{0}\right]$
$=\vec{u}\cdot\vec{v}\times\vec{w}-\vec{v}\cdot\vec{u}\times\vec{w}-\vec{w}\cdot\vec{u}\times\vec{v}$
[All other variables]
$=\left[\vec{u}\,\vec{v}\,\vec{w}\right]+\left[\vec{u}\,\vec{v}\,\vec{w}\right]-\left[\vec{u}\,\vec{v}\,\vec{w}\right]$
$=\left[\vec{u}\,\vec{v}\,\vec{w}\right]$