Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $u = f(x^2) , v = g(x^3) , f'(x) = \sin x $ and $g'(x) = \cos x,$ then $ \frac{du}{dv} = $

COMEDKCOMEDK 2008Continuity and Differentiability

Solution:

$u =f\left(x^2\right) , v =g\left(x^{3}\right) $
$f'\left(x\right) = \sin x, g'\left(x\right) =\cos x$
$ \frac{du}{dx} = f'\left(x^{2}\right).2x$ and $\frac{dv}{dx} =g'\left(x^{3}\right) .3x^{2}$
$ \frac{du}{dv} =\frac{du}{dx}. \frac{dx}{dv} = \frac{f'\left(x^{2}\right).2x}{g'\left(x^{3}\right).3x^{2}} = \frac{2}{3x} \frac{ \sin x^{2}}{\cos x^{3}} $