Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $u_{10}=\int\limits_0^{\pi / 2} x^{10} \sin x d x$, then the value of $u_{10}+90 u_8$ is :

Integrals

Solution:

$U_{10}=\left(-x^{10} \cos x\right)_0^{\pi / 2}+\int\limits_0^{\pi / 2} 10 x^9 \cos x d x$
$=10\left[x^9 \sin x\right]_0^{\pi / 2}-10 \times 9 \int\limits_0^{\pi / 2} x^8 \sin x d x$
$U_{10}+90 U_8=\frac{10 \cdot \pi^9}{2^9}$