Q.
If two lines $L_1$ and $L_2$ in space, are defined by
$L_{1}=\left\{x=\sqrt{\lambda }y+\left(\sqrt{\lambda }-1\right),z=+\left(\sqrt{\lambda }-1\right)+y+\sqrt{\lambda }\right\} $ and $L_{2}=\left\{x=\sqrt{\mu}y+\left(1-\sqrt{\mu}\right)\right\}, z=\left(1-\sqrt{\mu }\right)y+\sqrt{\mu }$
then $L_{1}$ is perpendicular to $L_{2}$, for all nonnegative reals $\lambda$ and $\mu$, such that :
Solution: