Q. If two lines $L_1$ and $L_2$ in space are defined by $L_1=\{x=\sqrt{\lambda} y+(\sqrt{\lambda}-1), z=(\sqrt{\lambda}-1) y+\sqrt{\lambda}\}$ and $L_2=\{x=\sqrt{\mu} y+(1-\sqrt{\mu}), z=(1-\sqrt{\mu}) y+\sqrt{\mu}\}$ then $L_1$ is perpendicular to $L_2$, for all non-negative reals $\lambda$ and $\mu$, such that
Vector Algebra
Solution: