Q.
If two lines $L_1$ and $L_2$ in space, are defined by
$L_{1} = \left\{x = \sqrt{\lambda}y + \left(\sqrt{\lambda }-1\right), z =\left(\sqrt{\lambda }-1\right)y+\sqrt{\lambda }\right\}$ and
$L_{2} = \left\{x = \sqrt{\mu}y+\left(1-\sqrt{\mu }\right), z = \left(1-\sqrt{\mu }\right)y+\sqrt{\mu }\right\}$
then $L_{1}$ is perpendicular to $L_{2}$, for all non-negative reals $\lambda$ and $\mu$, such that :
Three Dimensional Geometry
Solution: