Thank you for reporting, we will resolve it shortly
Q.
If twice the $11^{th}$ term of an AP is equal to $7$ times its $21^{st}$ term, then its $25^{th}$ term is equal to
J & K CETJ & K CET 2005
Solution:
$11^{th}$ term of an $ AP=a+(11-1)\,d=a+10d $
$21^{st}$ term of an $ AP=a+20d $ and
$25^{th}$ term of an $ AP=a+24d $
According to the given condition,
$ 2(a+10d)=7(a+20d) $
$ \Rightarrow $ $ 2a+20d=7a+140d $
$ \Rightarrow $ $ -5a=120d $
$ \Rightarrow $ $ a=-\frac{120}{5}\,d=-24d $
$ \therefore $ $25^{th}$ term $ =-24d+24d=0 $