Thank you for reporting, we will resolve it shortly
Q.
If $\theta=\pi / 4 n$, then the value of $\tan \theta \tan 2 \theta \cdots \tan (2 n-2)$ $\theta \tan (2 n-1) \theta$ is
Trigonometric Functions
Solution:
$2 n \theta=\pi / 2$. Thus,
$\theta$ and $(2 n-1) \theta=(\pi / 2)-\theta ; 2 \theta$ and $(2 n-2) \theta=(\pi / 2)-2 \theta, \cdots$
form complementary angles $A$ and $B$ so that $\tan A \tan B=\tan A \cot A=1$ for each pair.