Given equation of straight line is
$x^{2}-5 x y+4 y^{2}+3 x-4=0$
$\therefore \tan \theta=\left|\frac{2 \sqrt{\left(-\frac{5}{2}\right)^{2}-4}}{5}\right|$
$=\left|\frac{2 \sqrt{\frac{25}{4}-4}}{5}\right|=\frac{2}{5} \times \sqrt{\frac{9}{4}}=\frac{2}{5} \times \frac{3}{2}=\frac{3}{5}$
$\Rightarrow \,\tan ^{2} \theta=\frac{9}{25}$