Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\theta$ and $\phi$ are acute angles, $\sin \, \theta = \frac{1}{2} , \cos \, \phi = \frac{1}{3},$ then the value of $\theta + \phi $ lies in

Trigonometric Functions

Solution:

Now $\sin\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$
and $ \cos \phi = \frac{1}{3} \Rightarrow \frac{\pi}{3} < \phi < \frac{\pi}{2} $
$\left(\because \frac{1}{2} > \frac{1}{3} > 0 , i.e., \cos \frac{\pi}{3} > \cos \phi > \cos \frac{\pi}{2}\right) $
Hence $\frac{\pi}{6} + \frac{\pi}{3} < \theta + \phi< \frac{\pi}{6} + \frac{\pi}{2} $