Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the volume of a spherical ball is increasing at the rate of 4 π cc/sec, then the rate of increase of its radius (in cm/ sec), when the volume is 288 π cc, is :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the volume of a spherical ball is increasing at the rate of $4\,\pi$ cc/sec, then the rate of increase of its radius (in cm/ sec), when the volume is $288\,\pi$ cc, is :
JEE Main
JEE Main 2014
Application of Derivatives
A
$\frac{1}{6}$
10%
B
$\frac{1}{9}$
7%
C
$\frac{1}{36}$
77%
D
$\frac{1}{24}$
6%
Solution:
Volume of sphere $V =\frac{4}{3}\pi r^{3}\quad...\left(1\right)$
$\frac{dv}{dt} = \frac{4}{3}. 3\pi r^{2}. \frac{dr}{dt}$
$4\pi = 4\pi r^{2}. \frac{dr}{dt}$
$\frac{1}{r^{2}} = \frac{dr}{dt}$
Since, $V = 288\pi$, therefore from $\left(1\right)$, we have
$288\pi = \frac{4}{3}\pi\left(r^{3}\right)\Rightarrow \frac{288\times3}{4} = r^{3}$
$\Rightarrow 216 = r^{3}$
$\Rightarrow r = 6$
Hence, $\frac{dr}{dt} = \frac{1}{36}.$