Thank you for reporting, we will resolve it shortly
Q.
If the vectors $i -2 x j -3 y k$ and $i +3 x j +2 y k$ are orthogonal to each other, then the locus of the point $(x, y)$ is
EAMCETEAMCET 2011
Solution:
Since, vectors are orthogonal.
$\therefore ( i -2 x j -3 y k ) \cdot( i +3 x j +2 y k )=0$
$\Rightarrow 1-6 x^{2}-6 y^{2}=0$
$ \Rightarrow x^{2}+y^{2}=\frac{1}{6}$
Hence, the locus of a point is a circle.