Q. If the vectors $\bar{a}=\lambda^{3} \hat{i}+\hat{k}, \bar{b}=\hat{i}-\lambda^{3} \hat{j}$ and $\bar{c}=\hat{i}+(2 \lambda-\sin \lambda) \hat{j}-\lambda \hat{k}$ are coplanar, then find the number of distinct real values of $\lambda$.
Vector Algebra
Solution: