Q. If the value of the sum $29\left(\left(\_{}^{30}C\right)_{0}\right)+28\left(\left(\_{}^{30}C\right)_{1}\right)+27\left(\left(\_{}^{30}C\right)_{2}\right)+.\ldots \ldots .+1\left(\left(\_{}^{30}C\right)_{28}\right)+0\cdot \left(\left(\_{}^{30}C\right)_{29}\right)-\left(\left(\_{}^{30}C\right)_{30}\right)$ is equal to $K\cdot 2^{32},$ then the value of $K$ is equal to
NTA AbhyasNTA Abhyas 2020Binomial Theorem
Solution: