Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the unit of length and mass be doubled, then the numerical value w.r.t present value of the universal gravitation constant $G$ will become

Physical World, Units and Measurements

Solution:

As, $F=\frac{GM_{1}M_{2}}{r^{2}}$
$\Rightarrow \left[G\right]=\left[\frac{Fr^{2}}{M^{2}}\right]=\left(\frac{\left[MLT^{-2}\right]\left[L^{2}\right]}{\left[M^{2}\right]}\right)=\left[M^{-1}L^{3}T^{-2}\right]$
Now, $n_{1}u_{1}=n_{2}u_{2}$
Therefore, $n_{2}=\left(n_{1}\right)\left(\frac{u_{1}}{u_{2}}\right)=\left(n_{1}\right)\left(\frac{M_{1}^{-1}L^{3}_{1}T^{-2}_{1}}{M_{2}^{-1}L^{3}_{3}T^{-2}_{3}}\right)=\left(\frac{n_{1}}{4}\right)$