Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the total number of selections of at least (n + 1) things from $(2n + 1)$ different things is 256, then the value of n is

Permutations and Combinations

Solution:

${ }^{(2 n +1)} C _{( n +1)}+{ }^{(2 n +1)} C _{( n +2)}+\ldots \ldots . .+{ }^{(2 n +1)} C _{(2 n +1)}=256 $
$\frac{1}{2}\left[{ }^{(2 n +1)} C _0+{ }^{(2 n +1)} C _1+\ldots \ldots .+{ }^{(2 n +1)} C _{(2 n +1)}\right]=256$
$\frac{1}{2} \cdot 2^{2 n +1}=256 \Rightarrow 2^{2 n }=256=2^8 \Rightarrow n =4 $