Thank you for reporting, we will resolve it shortly
Q.
If the tangent at point $P$ on the circle $x^{2}+y^{2}+6 x+6 y-2=0$ meets the straight line $5 x-2 y+6=0$ at a point $Q$ on the $y$-axis, then length $P Q$ is
Bihar CECEBihar CECE 2009
Solution:
$x^{2}+y^{2}+6 x+6 y-2 =0$
Centre $(-3-3)$ radius $=\sqrt{9+9+2}$
$=\sqrt{20}$
Now, $Q C=\sqrt{(-3)^{2}+6^{2}}=\sqrt{45}$
In right $\Delta C P Q$
$P Q=\sqrt{45-20}=5$