Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the sum of two unit vectors is also a unit vector, then magnitude of their difference and angle between the two given unit vectors is

Motion in a Plane

Solution:

$|\vec{R}|=|\vec{A}+\vec{B}|=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}$
$|\vec{A}|=|\vec{B}|=|\vec{R}|=1$
$1=1+1+2 \times 1 \times 1 \times \cos \theta$
$\cos \theta=-\frac{1}{2}$
$\Rightarrow \theta=120^{\circ}$
$|\vec{R}|=|\vec{A}-\vec{B}|=\sqrt{A^{2}+B^{2}-2 A B \cos 120^{\circ}}$
$=\sqrt{1^{2}+1^{2}-2 \times 1 \times 1 \times\left(-\frac{1}{2}\right)}$
$=\sqrt{3}=|\vec{A}-\vec{B}|$