Let the roots of the quadratic equation are $\alpha$ and $\beta$ then it is given that
$\alpha+\beta=1$ and $\alpha^{2}+\beta^{2}=13$
$\therefore \alpha \beta=\frac{1}{2}\left[(\alpha+\beta)^{2}-\left(\alpha^{2}+\beta^{2}\right)\right]$
$=\frac{1}{2}[1-13]=-6$
So, equation of required quadratic is
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\Rightarrow x^{2}-x-6=0$