Q. If the sum of roots of equation $ {{x}_{1}}=-3\,\,\,and\,\,\,{{y}_{1}}=4 $ is equal to sum of squares of their reciprocals, then $ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( \frac{x+1}{x+2} \right)}^{2x+1}}=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1-\frac{1}{x+2} \right)}^{2x+1}} $ and $ =\underset{x\to \infty }{\mathop{\lim }}\,{{\left[ {{\left( 1-\frac{1}{x+2} \right)}^{x+2}} \right]}^{\frac{2x+1}{x+2}}} $ are in
JamiaJamia 2014
Solution: