Thank you for reporting, we will resolve it shortly
Q.
If the sum of all the solutions of $\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)+\cot ^{-1}\left(\frac{1-x^2}{2 x}\right)=\frac{\pi}{3},-1 < x < 1, x \neq 0$, is $\alpha-\frac{4}{\sqrt{3}}$, then $\alpha$ is equal to ____
JEE MainJEE Main 2023Inverse Trigonometric Functions
Solution:
Case $I : x >0$
$ \tan ^{-1} \frac{2 x}{1-x^2}+\tan ^{-1} \frac{2 x}{1-x^2}=\frac{\pi}{3}$
$x=2-\sqrt{3}$
Case II : $x < 0$
$ \tan ^{-1} \frac{2 x}{1-x^2}+\tan ^{-1} \frac{2 x}{1-x^2}+\pi=\frac{\pi}{3} $
$x=\frac{-1}{\sqrt{3}} \Rightarrow \alpha=2$