Q. If the sum $\displaystyle\sum_{n=1}^{\infty} \tan ^{-1}\left(\frac{2}{n^2+n+4}\right)$ is equal to $\tan ^{-1}\left(\frac{a}{b}\right)$, where $a, b \in N$, then find the least value of $(a+b)$
Inverse Trigonometric Functions
Solution: