Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the sum
$\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{2}+2^{2}+3^{2}}+...... +$ up to $20 $ terms is equal to $\frac{k}{21}$, then $k$ is equal to :

JEE MainJEE Main 2014Sequences and Series

Solution:

$t_{n}=\frac{2n+1}{\frac{n\left(n+1\right)\left(2n+1\right)}{6}}=\frac{6}{n\left(n+1\right)}=6\left(\frac{1}{n}-\frac{1}{n+1}\right)$
$S_{n}=6\left\{\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+.....-\frac{1}{21}\right\}=6\left\{\frac{1}{1}-\frac{1}{21}\right\}$
$=6\left(\frac{20}{21}\right)=\frac{120}{21} \Rightarrow k=120$