Q. If the roots of the quadratic equation $ 3{{x}^{2}}+2x+{{a}^{2}}-a=0 $ in $ x $ are of opposite signs, then a lies in the interval
Solution:
$ 3{{x}^{2}}+2x+{{a}^{2}}-a=0 $
The condition for a quadratic equation have both roots are an opposite sign is constant term $ <0 $
$ \Rightarrow $ $ ({{a}^{2}}-a)<0 $
$ \Rightarrow $ $ a(a-1)<0 $
$ \Rightarrow $ $ a\in (0,1) $
