Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the roots of the equation $ =\underset{x\to \infty }{\mathop{\lim }}\,\frac{2+1/x}{1+2/x}={{e}^{-2}} $ are real and less than 3,then

JamiaJamia 2014

Solution:

Given equation is $ \upsilon /\text{1}0 $ . If roots are real, then $ f $ $ 1.11f $ $ 1.22f $ $ f $ $ 1.27f $ $ \text{1}.0\text{1}\times \text{1}{{0}^{\text{5}}}\text{ N}/{{\text{m}}^{\text{2}}} $ $ \text{9}.\text{13}\times \text{1}{{0}^{\text{4}}}\text{ N}/{{\text{m}}^{\text{2}}} $ Also roots are less than 3, hence $ \text{9}.\text{13}\times \text{1}{{0}^{\text{3}}}\text{N}/{{\text{m}}^{\text{2}}} $ $ \text{18}.\text{26 N}/{{\text{m}}^{\text{2}}} $ $ \text{2}.\text{25}\times \text{1}{{0}^{\text{3}}}\text{min} $ $ \text{3}.\text{97}\times \text{1}{{0}^{\text{3}}}\text{min} $ $ 9.13\times {{10}^{3}}N/{{m}^{2}} $ $ \text{5}.\text{25}\times \text{1}{{0}^{\text{3}}}\text{min} $ $ \left[ \text{FL}{{\text{T}}^{-\text{2}}} \right] $ Either $ \left[ \text{F}{{\text{L}}^{\text{2}}}{{T}^{-\text{2}}} \right] $ or $ \left[ \text{F}{{\text{L}}^{-\text{1}}}{{\text{T}}^{\text{2}}} \right] $ Hence, only $ \left[ {{\text{F}}^{2}}\text{L}{{\text{T}}^{\text{-2}}} \right] $ satisfy.