Thank you for reporting, we will resolve it shortly
Q.
If the roots of the equation $\frac{a}{x-a}+\frac{b}{x-b}=1$ are equal in magnitude and opposite in sign, then
Complex Numbers and Quadratic Equations
Solution:
Given equation i s $\frac{a}{x-a}+\frac{b}{x-b}=1$
$\Rightarrow \, a\left(x-b\right)+b\left(x-a\right)$
$=\left(x-a\right)\left(x-b\right)$
$\Rightarrow \, x^{2}-x\left(a+b\right)+ab$
$=ax-ab+bx-ab$
$\Rightarrow \, x^{2}-2x\left(a+b\right)+3ab=0$
So, sum of roots $=\alpha+\left(-\alpha\right)=2\left(a+b\right)$
or $a+b=0$.