Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the ratio of lengths, radii and Young's modulus of steel and brass wires shown in the figure are $a, b$ and $c$ respectively, the ratio between the increase in lengths of brass and steel wires would be
image

EAMCETEAMCET 2009

Solution:

Free body diagram of the two blocks are
image
Given, $\frac{l_{1}}{l_{2}}=a, \frac{r_{1}}{r_{2}}=b, \frac{Y_{1}}{Y_{2}}=c$
Let Young's modulus of steel is $Y_{1}$ and of brass is $Y_{2}$
$\therefore Y_{1}=\frac{F_{1} \cdot l_{1}}{A_{1} \cdot \Delta_{1}}$ ......(i)
and $Y_{2}=\frac{F_{2} \cdot l_{2}}{A_{2} \Delta l_{2}}$ ......(ii)
Dividing Eq. (i) by Eq. (ii), we get
$\frac{Y_{1}}{Y_{2}}=\frac{\frac{F_{1} \cdot l_{1}}{A_{1} \cdot \Delta_{1}}}{\frac{F_{2} \cdot l_{2}}{A_{2} \cdot \Delta l_{2}}} $
or $\frac{Y_{1}}{Y_{2}}=\frac{F_{1} \cdot A_{2} \cdot l_{1} \cdot \Delta l_{2}}{F_{2} \cdot A_{1} \cdot l_{2} \cdot \Delta_{1}}$ ......(iii)
Force on steel wire from free body diagram
$T=F_{1}=(2 g) $ newton
Force on brass wire from free body diagram
$F_{2}=T^{\prime}=T+2 g=(4 g)$ newton
Now, putting the value of $F_{1}, F_{2}$, in Eq. (iii), we get
$\frac{Y_{1}}{Y_{2}} =\left(\frac{2 g}{4 g}\right) \cdot\left(\frac{\pi r_{2}^{2}}{\pi r_{1}^{2}}\right) \left[\frac{l_{1}}{l_{2}}\right] \cdot\left(\frac{\Delta l_{2}}{\Delta l_{1}}\right) $
OR $c =\frac{1}{2}\left(\frac{1}{b^{2}}\right) \cdot a\left(\frac{\Delta l_{2}}{\Delta_{1}}\right) $
OR $\frac{\Delta l_{1}}{\Delta l_{2}}=\left(\frac{a}{2 b^{2} c}\right) $