Q. If the range of real values of $b$ for which the equation $\left(x^4+4 x^2+4\right)-(b+4)\left(x^4+6 x^2+8\right)-(b+5)\left(x^4+8 x^2+16\right)=0$ has atleast one real solution is $[\alpha, \beta)$ then find the value of $(2 \alpha-5 \beta)$.
Complex Numbers and Quadratic Equations
Solution: