Thank you for reporting, we will resolve it shortly
Q.
If the radius of the earth contracts to half of its present day value without change in mass, then the length of the day will be
J & K CETJ & K CET 2004
Solution:
From law of conservation of angular momentum, $J=I \omega=$ constant
$\therefore I_{1} \omega_{1}=I_{2} \omega_{2}$
where $I$ is moment of inertia and co the angular velocity.
Moment of inertia of earth assuming it be a sphere of radius
$R=\frac{2}{5} M R^{2}$
Also, $\omega=\frac{2 \pi}{T}$
$\therefore \left(\frac{2}{5} M R_{1}^{2}\right)\left(\frac{2 \pi}{T_{1}}\right)$
$=\left(\frac{2}{5} M R_{2}^{2}\right)\left(\frac{2 \pi}{T_{2}}\right)$
$\Rightarrow \frac{R_{1}^{2}}{T_{1}}=\frac{R_{2}^{2}}{T_{2}}$
$\Rightarrow \frac{R_{1}^{2}}{24}=\left(\frac{R_{1}}{2}\right)^{2} \times \frac{1}{T_{2}}$
$\Rightarrow T_{2}=6\, h$