Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the quadratic equation $z^{2}+(a+i b) z+c+i d=0$, where $a, b, c, d$ are non-zero real numbers, has a real root, then

Complex Numbers and Quadratic Equations

Solution:

Let $\alpha$ be a real root of the given equation.
Then, $\alpha^{2}+(a+i b) \alpha+c+i d=0$
$\Rightarrow \alpha^{2}+a \alpha+c=0 $ and $ b \alpha+d=0$
$\Rightarrow \left(-\frac{d}{b}\right)^{2}+a\left(-\frac{b}{d}\right)+c=0$
$\Rightarrow \frac{d^{2}}{b^{2}}-\frac{a d}{b}+c=0$
or $ d^{2}-a b d+b^{2} c=0$