Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If the points $ (k,3),(2,k),(-k,3) $ are collinear, then the values of k are:

KEAMKEAM 2005

Solution:

$ \because $ Points $ (k,3),(2,k),(-k,3) $ are collinear.
$ \left| \begin{matrix} k & 3 & 1 \\ 2 & k & 1 \\ -k & 3 & 1 \\ \end{matrix} \right|=0 $
$ \Rightarrow $ $ k(k-3)-3(2+k)+1(6+{{k}^{2}})=0 $
$ \Rightarrow $ $ {{k}^{2}}-3k-6-3k+6+{{k}^{2}}=0 $
$ \Rightarrow $ $ 2{{k}^{2}}-6k=0 $
$ \Rightarrow $ $ k(k-3)=0 $
$ \Rightarrow $ $ k=0,3 $