Q. If the point $A(2,-9, \lambda)$ and $B(\lambda,-1,-3)$ lie on the opposite sides of a plane which contain the lines $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and $\frac{x}{1}=\frac{7-y}{3}=\frac{z+7}{2}$, then find the largest integral value of $\lambda$.
Vector Algebra
Solution: